Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.920
Filtrar
1.
Lipids Health Dis ; 23(1): 85, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515137

RESUMO

BACKGROUND: Familial hypercholesterolemia (FH) is a prevalent hereditary disease that can cause aberrant cholesterol metabolism. In this study, we confirmed that c.415G > A in low-density lipoprotein receptor (LDLR), an FH-related gene, is a pathogenic variant in FH by in silico analysis and functional experiments. METHODS: The proband and his family were evaluated using the diagnostic criteria of the Dutch Lipid Clinic Network. Whole-exome and Sanger sequencing were used to explore and validate FH-related variants. In silico analyses were used to evaluate the pathogenicity of the candidate variant and its impact on protein stability. Molecular and biochemical methods were performed to examine the effects of the LDLR c.415G > A variant in vitro. RESULTS: Four of six participants had a diagnosis of FH. It was estimated that the LDLR c.415G > A variant in this family was likely pathogenic. Western blotting and qPCR suggested that LDLR c.415G > A does not affect protein expression. Functional studies showed that this variant may lead to dyslipidemia by impairing the binding and absorption of LDLR to low-density lipoprotein ( LDL). CONCLUSION: LDLR c.415G > A is a pathogenic variant in FH; it causes a significant reduction in LDLR's capacity to bind LDL, resulting in impaired LDL uptake. These findings expand the spectrum of variants associated with FH.


Assuntos
Hiperlipoproteinemia Tipo II , Humanos , Fenótipo , Hiperlipoproteinemia Tipo II/genética , Hiperlipoproteinemia Tipo II/diagnóstico , Receptores de LDL/genética , Receptores de LDL/metabolismo , Lipoproteínas LDL/genética , Mutação , Pró-Proteína Convertase 9/genética
2.
Nat Commun ; 15(1): 2789, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555386

RESUMO

Proprotein convertase subtilisin/kexin type-9 (PCSK9) binds to and degrades low-density lipoprotein (LDL) receptor, leading to increase of LDL cholesterol in blood. Its blockers have emerged as promising therapeutics for cardiovascular diseases. Here we show that PCSK9 itself directly induces inflammation and aggravates atherosclerosis independently of the LDL receptor. PCSK9 exacerbates atherosclerosis in LDL receptor knockout mice. Adenylyl cyclase-associated protein 1 (CAP1) is the main binding partner of PCSK9 and indispensable for the inflammatory action of PCSK9, including induction of cytokines, Toll like receptor 4, and scavenger receptors, enhancing the uptake of oxidized LDL. We find spleen tyrosine kinase (Syk) and protein kinase C delta (PKCδ) to be the key mediators of inflammation after PCSK9-CAP1 binding. In human peripheral blood mononuclear cells, serum PCSK9 levels are positively correlated with Syk, PKCδ, and p65 phosphorylation. The CAP1-fragment crystallizable region (CAP1-Fc) mitigates PCSK9-mediated inflammatory signal transduction more than the PCSK9 blocking antibody evolocumab does.


Assuntos
Aterosclerose , Pró-Proteína Convertase 9 , Animais , Camundongos , Humanos , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , NF-kappa B/metabolismo , Leucócitos Mononucleares/metabolismo , Aterosclerose/metabolismo , Receptores de LDL/metabolismo , Inflamação , LDL-Colesterol , Camundongos Knockout
3.
PLoS One ; 19(3): e0297231, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38507394

RESUMO

Familial hypercholesterolemia is an inherited disorder that remains underdiagnosed. Conventional genetic testing methods such as next-generation sequencing (NGS) or target PCR are based on the amplification process. Due to the efficiency limits of polymerase and ligase enzymes, these methods usually target short regions and do not detect large mutations straightforwardly. This study combined the long-read nanopore sequencing and CRISPR-Cas9 system to sequence the target DNA molecules without amplification. We originally designed and optimized the CRISPR-RNA panel to target the low-density lipoprotein receptor gene (LDLR) and proprotein convertase subtilisin/kexin type 9 gene (PCSK9) from human genomic DNA followed by nanopore sequencing. The average coverages for LDLR and PCSK9 were 106× and 420×, versus 1.2× for the background genome. Among them, continuous reads were 52x and 307x, respectively, and spanned the entire length of LDLR and PCSK9. We identified pathogenic mutations in both coding and splicing donor regions in LDLR. We also detected an 11,029 bp large deletion in another case. Furthermore, using continuous long reads generated from the benchmark experiment, we demonstrated how a false-positive 670 bp deletion caused by PCR amplification errors was easily eliminated.


Assuntos
Hiperlipoproteinemia Tipo II , Sequenciamento por Nanoporos , Humanos , Pró-Proteína Convertase 9/genética , Sistemas CRISPR-Cas/genética , Receptores de LDL/genética , Receptores de LDL/metabolismo , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/genética , Mutação , Genômica , DNA
4.
FASEB J ; 38(6): e23573, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38526846

RESUMO

Familial hypercholesterolemia (FH) is one of the most prevalent monogenetic disorders leading to cardiovascular disease (CVD) worldwide. Mutations in Ldlr, encoding a membrane-spanning protein, account for the majority of FH cases. No effective and safe clinical treatments are available for FH. Adenine base editor (ABE)-mediated molecular therapy is a promising therapeutic strategy to treat genetic diseases caused by point mutations, with evidence of successful treatment in mouse disease models. However, due to the differences in the genomes between mice and humans, ABE with specific sgRNA, a key gene correction component, cannot be directly used to treat FH patients. Thus, we generated a knock-in mouse model harboring the partial patient-specific fragment and including the Ldlr W490X mutation. LdlrW490X/W490X mice recapitulated cholesterol metabolic disorder and clinical manifestations of atherosclerosis associated with FH patients, including high plasma low-density lipoprotein cholesterol levels and lipid deposition in aortic vessels. Additionally, we showed that the mutant Ldlr gene could be repaired using ABE with the cellular model. Taken together, these results pave the way for ABE-mediated molecular therapy for FH.


Assuntos
Hipercolesterolemia , Hiperlipoproteinemia Tipo II , Humanos , Camundongos , Animais , RNA Guia de Sistemas CRISPR-Cas , Hiperlipoproteinemia Tipo II/genética , Hiperlipoproteinemia Tipo II/terapia , Mutação , Hipercolesterolemia/genética , Colesterol , Receptores de LDL/genética , Receptores de LDL/metabolismo
5.
Clin Chim Acta ; 556: 117847, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38417778

RESUMO

Familial hypercholesterolemia (FH) is an inherited disorder characterized by increased low-density lipoprotein LDL) cholesterol and atherosclerotic cardiovascular disease. Although initial genetic analysis linked FH to LDL receptor mutations, subsequent work demonstrated that a gain-of-function mutation in the proprotein convertase subtilisin/kexin type 9 (PCSK9), which causes LDL-R degradation, was shown to be the cause of FH. In this review, we describe the history of research on FH, its clinical phenotyping and genotyping and advances in treatment with special focus on Japan.


Assuntos
Hiperlipoproteinemia Tipo II , Pró-Proteína Convertase 9 , Humanos , Pró-Proteína Convertase 9/genética , Serina Endopeptidases/metabolismo , Pró-Proteína Convertases/genética , Pró-Proteína Convertases/metabolismo , Pró-Proteína Convertases/uso terapêutico , Japão , Receptores de LDL/genética , Receptores de LDL/metabolismo , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/genética , Mutação
6.
Biochem Soc Trans ; 52(1): 431-440, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38329179

RESUMO

The amount of the low-density lipoprotein receptor (LDLR) on the surface of hepatocytes is the primary determinant of plasma low-density lipoprotein (LDL)-cholesterol level. Although the synthesis and cellular trafficking of the LDLR have been well-documented, there is growing evidence of additional post-translational mechanisms that regulate or fine tune the surface availability of the LDLR, thus modulating its ability to bind and internalise LDL-cholesterol. Proprotein convertase subtilisin/kexin type 9 and the asialoglycoprotein receptor 1 both independently interact with the LDLR and direct it towards the lysosome for degradation. While ubiquitination by the E3 ligase inducible degrader of the LDLR also targets the receptor for lysosomal degradation, ubiquitination of the LDLR by a different E3 ligase, RNF130, redistributes the receptor away from the plasma membrane. The activity of the LDLR is also regulated by proteolysis. Proteolytic cleavage of the transmembrane region of the LDLR by γ-secretase destabilises the receptor, directing it to the lysosome for degradation. Shedding of the extracellular domain of the receptor by membrane-type 1 matrix metalloprotease and cleavage of the receptor in its LDL-binding domain by bone morphogenetic protein-1 reduces the ability of the LDLR to bind and internalise LDL-cholesterol at the cell surface. A better understanding of how the activity of the LDLR is regulated will not only unravel the complex biological mechanisms controlling LDL-cholesterol metabolism but also could help inform the development of alternative pharmacological intervention strategies for the treatment of hypercholesterolaemia.


Assuntos
Colesterol , Receptores de LDL , Receptores de LDL/metabolismo , LDL-Colesterol , Proteólise , Hepatócitos/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
7.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338741

RESUMO

Proprotein convertase subtilisin/kexin 9 (PCSK9) is a protein that plays a key role in the metabolism of low-density lipoprotein (LDL) cholesterol. The gain-of-function mutations of the PCSK9 gene lead to a reduced number of surface LDL receptors by binding to them, eventually leading to endosomal degradation. This, in turn, is the culprit of hypercholesterolemia, resulting in accelerated atherogenesis. The modern treatment for hypercholesterolemia encompasses the use of biological drugs against PCSK9, like monoclonal antibodies and gene expression modulators such as inclisiran-a short, interfering RNA (siRNA). Peptide nucleic acid (PNA) is a synthetic analog of nucleic acid that possesses a synthetic peptide skeleton instead of a phosphate-sugar one. This different structure determines the unique properties of PNA (e.g., neutral charge, enzymatic resistance, and an enormously high affinity with complementary DNA and RNA). Therefore, it might be possible to use PNA against PCSK9 in the treatment of hypercholesterolemia. We sought to explore the impact of three selected PNA oligomers on PCSK9 gene expression. Using a cell-free transcription/translation system, we showed that one of the tested PNA strands was able to reduce the PCSK9 gene expression down to 74%, 64%, and 68%, as measured by RT-real-time PCR, Western blot, and HPLC, respectively. This preliminary study shows the high applicability of a cell-free enzymatic environment as an efficient tool in the initial evaluation of biologically active PNA molecules in the field of hypercholesterolemia research. This cell-free approach allows for the omission of the hurdles associated with transmembrane PNA transportation at the early stage of PNA selection.


Assuntos
Hipercolesterolemia , Inibidores de PCSK9 , Ácidos Nucleicos Peptídicos , Humanos , Expressão Gênica , Hipercolesterolemia/tratamento farmacológico , Hipercolesterolemia/genética , Ácidos Nucleicos Peptídicos/farmacologia , Pró-Proteína Convertase 9/efeitos dos fármacos , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertases/genética , Receptores de LDL/genética , Receptores de LDL/metabolismo , Subtilisina/genética , Inibidores de PCSK9/farmacologia
8.
Adv Sci (Weinh) ; 11(13): e2305177, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38258479

RESUMO

Familial hypercholesterolemia (FH) is an inherited metabolic disease affecting cholesterol metabolism, with 90% of cases caused by mutations in the LDL receptor gene (LDLR), primarily missense mutations. This study aims to integrate six commonly used predictive software to create a new model for predicting LDLR mutation pathogenicity and mapping hot spot residues. Six predictive-software are selected: Polyphen-2, SIFT, MutationTaster, REVEL, VARITY, and MLb-LDLr. Software accuracy is tested with the characterized variants annotated in ClinVar and, by bioinformatic and machine learning techniques all models are integrated into a more accurate one. The resulting optimized model presents a specificity of 96.71% and a sensitivity of 98.36%. Hot spot residues with high potential of pathogenicity appear across all domains except for the signal peptide and the O-linked domain. In addition, translating this information into 3D structure of the LDLr highlights potentially pathogenic clusters within the different domains, which may be related to specific biological function. The results of this work provide a powerful tool to classify LDLR pathogenic variants. Moreover, an open-access guide user interface (OptiMo-LDLr) is provided to the scientific community. This study shows that combination of several predictive software results in a more accurate prediction to help clinicians in FH diagnosis.


Assuntos
Hiperlipoproteinemia Tipo II , Humanos , Fenótipo , Mutação , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/genética , Receptores de LDL/genética , Receptores de LDL/metabolismo , Simulação por Computador
9.
EMBO Rep ; 25(3): 951-970, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38287192

RESUMO

The exquisite specificity of antibodies can be harnessed to effect targeted degradation of membrane proteins. Here, we demonstrate targeted protein removal utilising a protein degradation domain derived from the endogenous human protein Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9). Recombinant antibodies genetically fused to this domain drive the degradation of membrane proteins that undergo constitutive internalisation and recycling, including the transferrin receptor and the human cytomegalovirus latency-associated protein US28. We term this approach PACTAC (PCSK9-Antibody Clearance-Targeting Chimeras).


Assuntos
Pró-Proteína Convertase 9 , Serina Endopeptidases , Humanos , Pró-Proteína Convertase 9/metabolismo , Pró-Proteína Convertases/metabolismo , Proteínas de Membrana , Receptores de LDL/metabolismo
10.
Cell Res ; 34(2): 140-150, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38182887

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is the most widespread tick-born zoonotic bunyavirus that causes severe hemorrhagic fever and death in humans. CCHFV enters the cell via clathrin-mediated endocytosis which is dependent on its surface glycoproteins. However, the cellular receptors that are required for CCHFV entry are unknown. Here we show that the low density lipoprotein receptor (LDLR) is an entry receptor for CCHFV. Genetic knockout of LDLR impairs viral infection in various CCHFV-susceptible human, monkey and mouse cells, which is restored upon reconstitution with ectopically-expressed LDLR. Mutagenesis studies indicate that the ligand binding domain (LBD) of LDLR is necessary for CCHFV infection. LDLR binds directly to CCHFV glycoprotein Gc with high affinity, which supports virus attachment and internalization into host cells. Consistently, a soluble sLDLR-Fc fusion protein or anti-LDLR blocking antibodies impair CCHFV infection into various susceptible cells. Furthermore, genetic knockout of LDLR or administration of an LDLR blocking antibody significantly reduces viral loads, pathological effects and death following CCHFV infection in mice. Our findings suggest that LDLR is an entry receptor for CCHFV and pharmacological targeting of LDLR may provide a strategy to prevent and treat Crimean-Congo hemorrhagic fever.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Receptores de LDL , Animais , Humanos , Camundongos , Endocitose , Glicoproteínas/metabolismo , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Vírus da Febre Hemorrágica da Crimeia-Congo/metabolismo , Febre Hemorrágica da Crimeia/prevenção & controle , Receptores de LDL/metabolismo , Internalização do Vírus
11.
Eur J Pharmacol ; 966: 176352, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38290567

RESUMO

BACKGROUND: Curcumin nicotinate (Curtn), derived from curcumin and niacin, reduces serum LDL-C levels, partly due to its influence on PCSK9. This study investigates IDOL's role in Curtn's lipid-lowering effects. OBJECTIVE: To elucidate Curtn's regulation of the IDOL/LDLR pathway and potential molecular mechanisms in hepatocytes. METHODS: Differential metabolites in Curtn-treated HepG2 cells were identified via LC-MS. Molecular docking assessed Curtn's affinity with IDOL. Cholesterol content and LDLR expression effects were studied in high-fat diet Wistar rats. In vitro evaluations determined Curtn's influence on IDOL overexpression's LDL-C uptake and LDLR expression in hepatocytes. RESULTS: Lipids were the main differential metabolites in Curtn-treated HepG2 cells. Docking showed Curtn's higher affinity to IDOL's FERM domain compared to curcumin, suggesting potential competitive inhibition of IDOL's binding to LDLR. Curtn decreased liver cholesterol in Wistar rats and elevated LDLR expression. During in vitro experiments, Curtn significantly enhanced the effects of IDOL overexpression in HepG2 cells, leading to increased LDL-C uptake and elevated expression of LDL receptors. CONCLUSION: Curtn modulates the IDOL/LDLR pathway, enhancing LDL cholesterol uptake in hepatocytes. Combined with its PCSK9 influence, Curtn emerges as a potential hyperlipidemia therapy.


Assuntos
Curcumina , Curcumina/análogos & derivados , Niacina/análogos & derivados , Pró-Proteína Convertase 9 , Ratos , Animais , LDL-Colesterol , Curcumina/farmacologia , Ratos Wistar , Simulação de Acoplamento Molecular , Ubiquitina-Proteína Ligases/metabolismo , Hepatócitos/metabolismo , Receptores de LDL/metabolismo , Colesterol , Lipoproteínas LDL/metabolismo
12.
Biochem Biophys Res Commun ; 690: 149292, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38000296

RESUMO

Atherosclerosis is a chronic inflammatory disease for which hepatic steatosis and atherogenic dyslipidemia are significant risk factors. We investigated the effects of endogenously generated very-long-chain polyunsaturated fatty acids (VL-PUFAs) on dyslipidemia and atherosclerosis development using mice that lack ELOVL5, a PUFA elongase that is required for the synthesis of arachidonic acid, EPA, and DHA from the essential fatty acids linoleic and linolenic acids, and the LDL receptor (LDLR). Elovl5-/-;Ldlr-/- mice manifest increased liver triglyceride and cholesterol concentrations due to the activation of sterol regulatory element binding protein-1, a transcription factor that activates enzymes required for de novo lipogenesis. Plasma levels of triglycerides and cholesterol in VLDL, IDL, and LDL were markedly elevated in Elovl5-/-;Ldlr-/- mice fed a chow and the mice exhibited marked aortic atherosclerotic plaques. Bone marrow-derived monocytes from wild-type (WT) and Elovl5-/- mice were polarized to M1 and M2 macrophages, and the effects of ELOVL5 on inflammatory activity were determined. There were no differences in most of the markers tested for M1 and M2 polarized cells between WT and Elovl5-/- cells, except for a slight increase in PGE2 secretion in Elovl5-/- cells, likely due to elevated Cox-2 expression. These results suggest that the deletion of Elovl5 leads to hepatic steatosis and dyslipidemia, which are the major factors in severe atherosclerosis in Elovl5-/-;Ldlr-/- mice.


Assuntos
Aterosclerose , Dislipidemias , Fígado Gorduroso , Animais , Camundongos , Aterosclerose/genética , Aterosclerose/metabolismo , Colesterol/metabolismo , Dislipidemias/complicações , Dislipidemias/genética , Dislipidemias/metabolismo , Elongases de Ácidos Graxos/metabolismo , Fígado Gorduroso/metabolismo , Fígado/metabolismo , Camundongos Knockout , Receptores de LDL/genética , Receptores de LDL/metabolismo , Triglicerídeos/metabolismo
13.
J Microbiol Biotechnol ; 34(2): 425-435, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-37997262

RESUMO

Schisandra chinensis extract (SCE) protects against hypocholesterolemia by inhibiting proprotein convertase subtilisin/kexin 9 (PCSK9) protein stabilization. We hypothesized that the hypocholesterolemic activity of SCE can be attributable to upregulation of the PCSK9 inhibition-associated low-density lipoprotein receptor (LDLR). Male mice were fed a low-fat diet or a Western diet (WD) containing SCE at 1% for 12 weeks. WD increased final body weight and blood LDL cholesterol levels as well as alanine transaminase and aspartate aminotransferase expression. However, SCE supplementation significantly attenuated the increase in blood markers caused by WD. SCE also attenuated WD-mediated increases in hepatic LDLR protein expression in the obese mice. In addition, SCE increased LDLR protein expression and attenuated cellular PCSK9 levels in HepG2 cells supplemented with delipidated serum (DLPS). Non-toxic concentrations of schisandrin A (SA), one of the active components of SCE, significantly increased LDLR expression and tended to decrease PCSK9 protein levels in DLPS-treated HepG2 cells. High levels of SA-mediated PCSK9 attenuation was not attributable to reduced PCSK9 gene expression, but was associated with free PCSK9 protein degradation in this cell model. Our findings show that PCSK9 secretion can be significantly reduced by SA treatment, contributing to reductions in free cholesterol levels.


Assuntos
Ciclo-Octanos , Fígado Gorduroso , Lignanas , Compostos Policíclicos , Schisandra , Masculino , Camundongos , Animais , Humanos , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Schisandra/metabolismo , Serina Endopeptidases/genética , Subtilisina , Pró-Proteína Convertases/genética , Pró-Proteína Convertases/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo , Células Hep G2
14.
Biochimie ; 216: 34-45, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37844755

RESUMO

A high-salt diet is known to increase serum cholesterol levels; however, the underlying mechanism of salt-induced dyslipidemia in patients with salt-sensitivity remains poorly understood. We aimed to investigate whether high-salt diet (HSD) can induce dyslipidemia and elucidate the underlying mechanism of salt-induced dyslipidemia in Dahl salt-sensitive (SS) rats. Metabolomic and biochemical analyses revealed that the consumption of an HSD (8 % NaCl) significantly increased the serum levels of total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) in SS rats. The enzyme-linked immunosorbent assay demonstrated an increase in circulating proprotein convertase subtilisin/kexin type 9 (PCSK9) levels, accompanied by a decrease in hepatic low-density lipoprotein receptor (LDLR) levels due to HSD consumption. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis revealed that HSD consumption activated sterol regulatory element-binding protein-2 (SREBP2) expression in the liver and kidney, resulting in upregulation of PCSK9 at the transcriptional level in the liver and at the translational level in the kidney, ultimately increasing circulating PCSK9 levels. The combined effects of HSD on the liver and kidney contributed to the development of hypercholesterolemia. Furthermore, an in vitro assay confirmed that high-salt exposure led to an increase in the protein expression of SREBP2 and PCSK9 secretion, thereby reducing low-density lipoprotein (LDL) uptake. This study, for the first time, shows that an HSD induces dyslipidemia through activation of the SREBP2/PCSK9 pathway, providing new insights into the prevention and treatment of dyslipidemia in patients with salt sensitivity.


Assuntos
Dislipidemias , Pró-Proteína Convertase 9 , Humanos , Ratos , Animais , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Ratos Endogâmicos Dahl , Cloreto de Sódio , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Receptores de LDL/metabolismo , LDL-Colesterol , Dieta , Dislipidemias/induzido quimicamente
15.
Naunyn Schmiedebergs Arch Pharmacol ; 397(3): 1727-1736, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37721554

RESUMO

Proprotein convertase subtilisin/kexin 9 (PCSK9) inhibitors have been shown to regulate lipid metabolism and reduce the risk of cardiovascular events. This study explores the effect and potential mechanism of PCSK9 inhibitors on lipid metabolism and coronary atherosclerosis. HepG2 cells were incubated with PCSK9 inhibitor. ApoE-/- mice were fed with a high fat to construct an atherosclerosis model, and then treated with PCSK9 inhibitor (8 mg/kg for 8 w). PCSK9 inhibitor downregulated microRNA (miRNA)-130a-3p expression in a dose-dependent manner. And, miR-130a-3p could bind directly to the 3' untranslated region (3'-UTR) region of LDLR to down-regulate LDLR expression in HepG2 cells, as confirmed by the luciferase reporter gene assay. In addition, miR-130a-3p overexpression significantly attenuated the promoting effect of PCSK9 inhibitor on LDLR and DiI-LDL uptake in HepG2 cells. More importantly, in vivo experiments confirmed that PCSK9 inhibitor could significantly inhibit miR-130a-3p levels and promote LDLR expression in liver tissues, thus regulating serum lipid profile and alleviating the progression of coronary atherosclerosis. PCSK9 inhibitor could moderately improve coronary atherosclerosis by regulating miR-130a-3p/LDLR axis, providing an exploitable strategy for the treatment of coronary atherosclerosis.


Assuntos
Aterosclerose , Doença da Artéria Coronariana , MicroRNAs , Camundongos , Animais , Humanos , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Pró-Proteína Convertase 9/farmacologia , Subtilisina/metabolismo , Subtilisina/farmacologia , Receptores de LDL/genética , Receptores de LDL/metabolismo , Camundongos Knockout para ApoE , Pró-Proteína Convertases/genética , Pró-Proteína Convertases/metabolismo , Pró-Proteína Convertases/farmacologia , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/metabolismo , Hepatócitos , Células Hep G2 , MicroRNAs/genética , MicroRNAs/metabolismo
16.
Geroscience ; 46(1): 257-263, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38105401

RESUMO

Proprotein convertase subtilisin/kexin type 9 (PCSK9), renowned for its pivotal role in low-density lipoprotein (LDL) regulation, has emerged as a compelling regulator of cardiometabolic aging. Beyond its well-established involvement in cholesterol metabolism, PCSK9's multifaceted influence on the aging processes of the cardiovascular and metabolic systems is garnering increasing attention. This review delves into the evolving landscape of PCSK9 in the context of cardiometabolic aging, offering fresh insights into its potential implications. Drawing inspiration from pioneering research conducted by the Pacher laboratory (Arif et al., Geroscience, 2023, PMID: 37726433), we delve into the intricate interplay of PCSK9 within the aging heart and liver, shedding light on its newfound significance. Recent studies underscore PCSK9's pivotal role in liver aging, suggesting intriguing connections between hepatic aging, lipid metabolism, and cardiovascular health. Additionally, we explore the therapeutic potential of PCSK9 as both a target and a biomarker, within the context of age-related cardiovascular disease.


Assuntos
Doenças Cardiovasculares , Pró-Proteína Convertase 9 , Humanos , Pró-Proteína Convertase 9/metabolismo , Receptores de LDL/metabolismo , Biomarcadores , Envelhecimento
17.
J Med Chem ; 67(1): 433-449, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38112492

RESUMO

Proprotein convertase subtilisin/kexin type-9 (PCSK9), a secreted protein that is synthesized and spontaneously cleaved in the endoplasmic reticulum, has become a hot lipid-lowering target chased by pharmaceutical companies in recent years. Autophagosome-tethering compounds (ATTECs) represent a new strategy to degrade targeted biomolecules. Here, we designed and synthesized PCSK9·ATTECs that are capable of lowering PCSK9 levels via autophagy in vivo, providing the first report of the degradation of a secreted protein by ATTECs. OY3, one of the PCSK9·ATTECs synthesized, shows greater potency to reduce plasma low-density lipoprotein cholesterol (LDL-C) levels and improve atherosclerosis symptoms than treatment with the same dose of simvastatin. OY3 also significantly reduces the high expression of PCSK9 caused by simvastatin administration in atherosclerosis model mice and subsequently increases the level of low-density lipoprotein receptor, promoting simvastatin to clear plasma LDL-C and alleviate atherosclerosis symptoms. Thus, we developed a new candidate compound to treat atherosclerosis that could also promote statin therapy.


Assuntos
Aterosclerose , Pró-Proteína Convertase 9 , Camundongos , Animais , Pró-Proteína Convertase 9/metabolismo , LDL-Colesterol/metabolismo , LDL-Colesterol/uso terapêutico , Sinvastatina/farmacologia , Sinvastatina/uso terapêutico , Receptores de LDL/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Autofagia
18.
Eur J Med Chem ; 265: 116063, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38160616

RESUMO

Among the strategies to overcome the underperformance of statins in cardiovascular diseases (CVDs), the development of drugs targeting the Proprotein Convertase Subtilisin-like Kexin type 9 (PCSK9) is considered one of the most promising. However, only anti-PCSK9 biological drugs have been approved to date, and orally available small-molecules for the treatment of hypercholesterolemic conditions are still missing on the market. In the present work, we describe the application of a phenotypic approach to the identification and optimization of 4-amino-2-pyridone derivatives as a new chemotype with anti-PCSK9 activity. Starting from an in-house collection of compounds, functional assays on HepG2 cells followed by a chemistry-driven hit optimization campaign, led to the potent anti-PCSK9 candidate 5c. This compound, at 5 µM, totally blocked PCSK9 secretion from HepG2 cells, significantly increased LDL receptor (LDLR) expression, and acted cooperatively with simvastatin by reducing its induction of PCSK9 expression. Finally, compound 5c also proved to be well tolerated in C57BL/6J mice at the tested concentration (40 mg/kg) with no sign of toxicity or behavior modifications.


Assuntos
Inibidores de PCSK9 , Pró-Proteína Convertase 9 , Animais , Humanos , Camundongos , Células Hep G2 , Camundongos Endogâmicos C57BL , Pró-Proteína Convertase 9/metabolismo , Receptores de LDL/metabolismo , Piridonas/química , Piridonas/metabolismo
19.
Tissue Cell ; 86: 102290, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38103473

RESUMO

Accelerating the repair of damaged endothelium can effectively inhibit the progression of atherosclerosis (AS). Transient receptor potential channel TRPM4 is a non-selective cation channel activated by internal Ca2+, which is expressed in endothelial cells. This study aimed to reveal the potential role of TRPM4 in AS along with the mechanism. Human coronary artery endothelial cells (HCAECs) induced by ox-LDL was regarded as an in vitro model. The impacts of TRPM4 knockdown on cellular inflammation response, oxidative stress, normal endothelial function and lipid peroxidation were evaluated. Given that ferroptosis promotes AS progression, the effects of TRPM4 on intracellular iron ions and ferroptosis-related proteins was determined. Afterwards, HCAECs were treated with ferroptosis inducer erastin, and the influence of ferroptosis in the cellular model was revealed. TRPM4 was elevated in response to ox-LDL treatment in HCAECs. TRPM4 knockdown reduced the inflammation response, oxidative stress and lipid peroxidation caused by ox-LDL, and maintained the normal function of HCAECs. Erastin treatment destroyed the impacts of TRPM4 knockdown that are beneficial for cells to resist ox-LDL, showing the enhancement of the above adverse factors. Together, this study found that TRPM4 knockdown reduced ox-LDL-induced inflammation, oxidative stress, and dysfunction in HCAECs, possibly via a mechanism involving Fe2+ and ferroptosis-related proteins.


Assuntos
Ferroptose , Canais de Cátion TRPM , Humanos , Receptores de LDL/metabolismo , Receptores de LDL Oxidado/metabolismo , Células Endoteliais/metabolismo , Receptores Depuradores Classe E/metabolismo , Células Cultivadas , Lipoproteínas LDL/farmacologia , Lipoproteínas LDL/metabolismo , Vasos Coronários/metabolismo , Proteínas/metabolismo , Inflamação/metabolismo , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo
20.
Acta Neuropathol Commun ; 11(1): 197, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38093390

RESUMO

In sporadic Alzheimer's disease (sAD) specific regions, layers and neurons accumulate hyperphosphorylated Tau (pTau) and degenerate early while others remain unaffected even in advanced disease. ApoER2-Dab1 signaling suppresses Tau phosphorylation as part of a four-arm pathway that regulates lipoprotein internalization and the integrity of actin, microtubules, and synapses; however, the role of this pathway in sAD pathogenesis is not fully understood. We previously showed that multiple ApoER2-Dab1 pathway components including ApoE, Reelin, ApoER2, Dab1, pP85αTyr607, pLIMK1Thr508, pTauSer202/Thr205 and pPSD95Thr19 accumulate together within entorhinal-hippocampal terminal zones in sAD, and proposed a unifying hypothesis wherein disruption of this pathway underlies multiple aspects of sAD pathogenesis. However, it is not yet known whether ApoER2-Dab1 disruption can help explain the origin(s) and early progression of pTau pathology in sAD. In the present study, we applied in situ hybridization and immunohistochemistry (IHC) to characterize ApoER2 expression and accumulation of ApoER2-Dab1 pathway components in five regions known to develop early pTau pathology in 64 rapidly autopsied cases spanning the clinicopathological spectrum of sAD. We found that (1) these selectively vulnerable neuron populations strongly express ApoER2; and (2) multiple ApoER2-Dab1 components representing all four arms of this pathway accumulate in abnormal neurons and neuritic plaques in mild cognitive impairment (MCI) and sAD cases and correlate with histological progression and cognitive deficits. Multiplex-IHC revealed that Dab1, pP85αTyr607, pLIMK1Thr508, pTauSer202/Thr205 and pPSD95Thr19 accumulate together within many of the same ApoER2-expressing neurons and in the immediate vicinity of ApoE/ApoJ-enriched extracellular plaques. Collective findings reveal that pTau is only one of many ApoER2-Dab1 pathway components that accumulate in multiple neuroanatomical sites in the earliest stages of sAD and provide support for the concept that ApoER2-Dab1 disruption drives pTau-associated neurodegeneration in human sAD.


Assuntos
Doença de Alzheimer , Receptores de LDL , Humanos , Doença de Alzheimer/genética , Apolipoproteínas E/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fosforilação , Receptores de LDL/metabolismo , Serina Endopeptidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...